Test C Chapter 5

Name_____

Solve the problem.

1) Suppose that h is continuous and that
$$\int_{-2}^{2} h(x) dx = 3$$
 and $\int_{2}^{9} h(x) dx = -10$.
Find $\int_{-2}^{9} h(x) dx$ and $\int_{9}^{-2} h(x) dx$

2) Suppose that g is continuous and that
$$\int_{2}^{7} g(x) dx = 6$$
 and $\int_{2}^{8} g(x) dx = 19$.
Find $\int_{8}^{7} g(x) dx$ and Find $\int_{8}^{8} f(x) dx$.

3) Suppose that f and g are continuous and that $\int_{2}^{6} f(x) dx = -5$ and $\int_{2}^{6} g(x) dx = 9$.

Find
$$\int_{2}^{6} [3f(x) + 2g(x)] dx$$
.

Find the average value over the given interval.

4) $y = \frac{1}{x}; [3, e]$

Find dy/dx.

5) If y =
$$\int_{x^4}^{1} 18t^9 dt$$
 find dy/dx

6)
$$y = \int_{sinx}^{cos x} \frac{1}{4 - t^2} dt$$
 find dy/dx

7) If
$$\int_{1}^{4} f(x) dx = 5$$
, find $\int_{1}^{4} (f(x) + 10) dx$

Evaluate the definite integral using areas or antiderivatives.

8)
$$\int_{-1}^{6} 3 \, dx$$

9)
$$\int_{1}^{2} (3x^4 - 4x^{-2}) dx$$

Evaluate the integral.

10)
$$\int_{0}^{\pi/2} 20 \cos x \, dx$$

11)
$$\int_{0}^{1} (x^5 - x^{\frac{1}{4}}) dx$$

12)
$$\int_{\pi/4}^{3\pi/4} 5 \csc \theta \cot \theta \, d\theta$$

13)
$$\int_{1}^{2} (4e^{x} - 5x^{-2}) dx$$

14) The graph of the function, f, is given below with position defined as follows.

$$g(x) = \int_0^x f(t) dt$$

- a) Determine the relative maximum of g(t). Justify your answer.
- b) Find the absolute maximum of g(t) on the interval [-5, 4]? Justify your answer.

- c) Determine any points of inflection of g. Justify your reasoning
- (f) Write the equation of the tangent line of g at t = 4.

Solve the problem.

15)

Use the data below to set-up the Midpoint Riemann Sums with 3 sub-interval that would approxin $\int_{12}^{12} P(t) dt$.

$$\int_{0}^{r} P(t)c$$

Т	0	2	4	6	8	10	12
P(t)	0	26	43	45	50	55	59

16) Let f be a function that is twice differentiable for all real numbers. The table gives values of f for s points in the closed interval $2 \le x \le 13$

Х		2	3	5	8	13
f(x	()	2	5	-3	2	7

Set-up a Trapezoid sum with 4 subintervals indicated by the data in the table to approximate

7

