Name \qquad

Solve the problem.

1) Suppose that h is continuous and that $\int_{-2}^{2} h(x) d x=3$ and $\int_{2}^{9} h(x) d x=-10$.

Find $\int_{-2}^{9} h(x) d x$ and $\int_{9}^{-2} h(x) d x$
2) Suppose that g is continuous and that $\int_{2}^{7} g(x) d x=6$ and $\int_{2}^{8} g(x) d x=19$.

Find $\int_{8}^{7} g(x) d x$ and Find $\int_{8}^{8} f(x) d x$.
3) Suppose that f and g are continuous and that $\int_{2}^{6} f(x) d x=-5$ and $\int_{2}^{6} g(x) d x=9$.

Find $\int_{2}^{6}[3 f(x)+2 g(x)] d x$.

Find the average value over the given interval.
4) $y=\frac{1}{x} ;[3, e]$

Find dy/dx.
5) If $y=\int_{x^{4}}^{1} 18 t^{9} d t$ find $d y / d x$
6) $y=\int_{\sin x}^{\cos x} \frac{1}{4-t^{2}} d t$ find $d y / d x$
7) If $\int_{1}^{4} f(x) d x=5$, find $\int_{1}^{4}(f(x)+10) d x$

Evaluate the definite integral using areas or antiderivatives.
8) $\int_{-1}^{6} 3 d x$
9) $\int_{1}^{2}\left(3 x^{4}-4 x^{-2}\right) d x$

Evaluate the integral.
10) $\int_{0}^{\pi / 2} 20 \cos x d x$
11) $\int_{0}^{1}\left(x^{5}-x^{\frac{1}{4}}\right) d x$
12) $\int_{\pi / 4}^{3 \pi / 4} 5 \csc \theta \cot \theta d \theta$
13) $\int_{1}^{2}\left(4 e^{x}-5 x^{-2}\right) d x$
14) The graph of the function, f, is given below with position defined as follows.
$g(x)=\int_{0}^{x} f(t) d t$

Graph of $f(t)$

a) Determine the relative maximum of $\mathrm{g}(\mathrm{t})$. Justify your answer.
b) Find the absolute maximum of $g(t)$ on the interval $[-5,4]$? Justify your answer.
c) Determine any points of inflection of g. Justify your reasoning
(f) Write the equation of the tangent line of g at $\mathrm{t}=4$.

Solve the problem.

15) Use the data below to set-up the Midpoint Riemann Sums with 3 sub-interval that would approxin $\int_{0}^{12} P(t) d t$.

T	0	2	4	6	8	10	12
$\mathrm{P}(\mathrm{t})$	0	26	43	45	50	55	59

16) Let f be a function that is twice differentiabtefor all real numbers. The table gives values of f for s points in the closed interval $2 \leq x \leq 13$

x	2	3	5	8	13
$f(x)$	2	5	-3	2	7

Set-up a Trapezoid sum with 4 subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x)$.

